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Abstract: Embedded image processing systems have many challenges, due to large computational requirements and 
other physical, power, and environmental constraints. However recent contemporary mobile devices include 
a graphical processing unit (GPU) in order to offer better use interface in terms of graphics. Some of these 
embedded GPUs also support OpenCL which allows the use of computation capacity of embedded GPUs 
for general purpose computing. Within this OpenCL support, challenges of image processing in embedded 
systems become easier to handle. In this paper, we present a new OpenCL-based image processing library, 
named TRABZ-10, which is specifically designed to run on an embedded platform. Our results show that 
the functions of TRABZ-10 show 7X speedup on embedded platform over the functions of OpenCV on 
average. 

1 INTRODUCTION 

Today's GPUs can use hundreds of parallel 
processor cores and can execute thousands of 
parallel threads. Their performance exceeds the 
performance of CPUs in arithmetic throughput and 
memory bandwidth. In this trend, OpenCL aims to 
make programming many core GPUs easier for 
programmers. OpenCL is a platform independent 
open standard which is able to run on different 
platforms of different vendors. OpenCL supports the 
use of many computation resources like embedded 
GPUs, CPUs, FPGAs or any other OpenCL enabled 
computation units. 

OpenCL fits well for a wide spectrum of 
applications and one of the common usage area is 
image/video processing. One of the most important 
challenges in the field is the high computation 
requirement to achieve high accuracy and real-time 
processing. With increasing video resolution and 
data frame sizes, it is getting harder to achieve real-
time performance.  

GPGPU offers the designers an option of high 
data-parallel computation. Most of the image 
processing algorithms fit well on this approach. Also, 
they can benefit the single instruction multiple data 
(SIMD) architecture of GPUs and can be effectively 
parallelized. However, it is not possible to say that 
all image processing algorithms fit well with data 

parallel approach, and they cannot be ported to 
GPUs with significant speedups. Although image 
processing algorithms are well suited to massively 
parallel architecture of GPUs, some of them are 
failed to achieve performance speedup. In addition 
to all of these, embedded architecture limitations 
give additional restrictions and this makes harder to 
port certain functions to GPU. 

In this paper we present an image processing 
library that is compatible with embedded devices. 
We chose OpenCV as a reference model and 
compared our library both in functionality and 
performance with OpenCV, which is one of the most 
popular and efficient image processing toolkits. To 
create a library that is suitable for embedded 
platforms and able to compete with OpenCV, we 
implemented key algorithms of image processing. 
While implementing these algorithms, our main 
purpose was to accelerate these algorithms on 
GPGPU using OpenCL.   

2 RELATED WORK 

The most common applications on GPGPU are 
image processing applications. Image processing 
operations perform the same computation on many 
pixels; they can exploit the massive data parallelism 
and outperform their CPU implementations. 
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The starting point of this research area was not 
based on GPGPUs, but based on regular GPUs on 
embedded platforms. First approaches include using 
OpenGL and DirectX APIs to program GPU’s 
shader cores and programmable pipeline using 
GLSL (Khronos Group, 2012) (Khronos Group, 
2004). Especially using OpenGL ES 2.0 on 
embedded platforms to increase performance of the 
image processing algorithms was a hot topic. The 
invention of CUDA and OpenCL maximized the use 
of GPGPUs for image processing and other 
applications. 

2.1 GPU Model 

General-purpose GPU model was achieved using 
programmable shader infrastructure. GLSL is the 
shader programming language which enables 
implementing not only graphics shader code, but 
also general purpose computation. A survey of 
general-purpose computation on GPUs is described 
in (Owens, J. 2007).  

Singhal et al. implemented many image 
processing, color conversion and transformation 
algorithms and applications like Harris corner 
detection and real-time video scaling for handheld 
devices (Singhal, N. 2010). They used OpenGL ES 
2.0 (OpenGL for Embedded Systems) (Munshi, A. 
2008) and its texture hardware to achieve their goal.  

There are other open source projects like 
GPUCV (Farrugia, J-P. 2006), MinGPU (Babenko, 
P. 2008) and OpenVIDIA (Fung, J. 2005). While 
GPUCV and MinGPU support using GPU and 
GPGPU functionalities simultaneously, OpenVIDIA 
can only use CUDA and implements a set of useful 
image processing functions.  

2.2 GPGPU Model 

Changing the computation and programming 
capabilities of GPUs, NVidia developed Compute 
Unified Device Architecture (CUDA) (Lindholm, E. 
2008) and made their GPUs, GPGPUs. GPGPUs 
support Single Instruction Multiple Thread (SIMT) 
architecture. SIMT architecture allows one 
instruction used by many threads and these threads 
can process multiple data, resulting in excessive 
performance gain. GPGPUs have been used 
extensively to exploit this performance gain in 
image processing applications. While some papers 
implement image processing functions from scratch 
(Yang, Z. 2008), some of them are implemented 
over existing libraries (Farrugia, J-P. 2006) (Kong, J. 
2010). There is also some research on particular 

image processing algorithms. In (Luo, Y. 2008), Luo 
et al. used CUDA to enhance the speed of canny 
edge detection algorithm.  

OpenCL is the standardized version of general 
purpose computing platform (Khronos OpenCL 
Working Group. 2008) (Munshi, A. 2011). Unlike 
CUDA, OpenCL works on various processors 
including embedded processors, DSPs and FPGAs 
(Czajkowski, T. 2012). OpenCL and CUDA have 
little differences in coding and capability as shown 
in (Karimi, K. 2010) (Fang, J. 2011) (Du, P. 2012). 

3 OpenCL EMBEDDED PROFILE 

3.1 OpenCL Programming Model 

OpenCL is an API which enables heterogeneous 
parallel programming on various devices like GPUs, 
DSPs, FPGAs and even CPUs. OpenCL 
specification is maintained by Khronos Group, but 
many vendors contribute to the improvement of this 
specification (Khronos OpenCL Working Group. 
2008). OpenCL programming model consists of one 
host and one or more compute devices as shown in 
Figure 1.  

Host part runs the C/C++ part of the code 
(OpenCL supports both C and C++), and 
communicates with the compute devices. The code 
that runs on compute units is called kernel and 
written in OpenCL C language, which is a subset of 
regular C language with functional extensions. 
Kernels can be compiled just-in-time or the program 
can read the pre-compiled device specific binary and 
execute this binary on compute units. These kernels 
are executed as single program multiple data which 
are grouped by 1D, 2D or 3D set of work items. 
Work items are grouped together into work groups. 
Work items can be executed in a single instruction 
multiple data (SIMD) fashion. The processors 
hierarchy and memory hierarchy is shown in Fig. 2. 

There can be multiple multiprocessor 
infrastructures which have multiple processors. In 
Figure 2, SP means streaming processor which is the 
building block of compute device. SPs are grouped 
into Multiprocessors. 

Multiprocessors have their own register files and 
their own on chip cache which is called local 
memory in OpenCL and shared memory in CUDA. 
Device memory is the global memory of the 
compute  unit  that  consists  of  RAM of  the  device. 

Device memory may include specific parts 
called texture cache and constant cache. These 
memory types are not mandatory, but if they exist,
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Figure 1: GPGPU Programming Model. 

 
Figure 2: GPGPU Processor and Memory Hierarchy. 

they are extremely useful. 

3.2 OpenCL Programming 
on Embedded Profile 

Unlike other Khronos standards, OpenCL does not 
have an ES (embedded systems) specification, but it 
has embedded profile which is a subset of OpenCL 
specification (Khronos OpenCL Working Group. 
2008). Embedded profile for example, does not have 
to support double, long or half types, rounding 
modes can be moderate like round to zero, 3D image 
support is not mandatory and such.  

Even though OpenCL has an embedded profile 
specification, there were not available devices or 
manufacturers until recently. There was some effort 
to be able to implement embedded profiled OpenCL, 
but it was not as efficient as it should be without the 
hardware support (Leskela, 2009). Using embedded 
system GPUs which support OpenGL ES 2.0 was 
the main idea among these researches. OpenGL ES 
2.0 enables programmable shaders and with 
OpenGL interface, useful functions can be 
implemented with extensive effort (Cheng, K. 2011) 
Lopez, M. (2011).  

4 TRABZ-10 IMAGE 
PROCESSING LIBRARY 

TRABZ-10 is an open source image processing 
library for embedded platforms with OpenCL 
support. Development is done in both Linux and 
Windows environment but testing of the functions is 
done using Vivante GC2000 GPU on Freescale 
i.Mx6q sample board. Vivante GC2000 board is 
considered a base and implementation and 
optimizations are done for this particular product.  

Even though this product is very powerful and 
efficient, it has downsides because of the embedded 
profile constrictions. There are little small size of 
local memory on the device and very limited number 
of registers. Local memory is not on chip, but a part 
of global memory, so using it does not increase 
performance. Also it has no usable texture memory 
and support for OpenCL images is limited. 

Considering these bottlenecks, we developed an 
image processing library for embedded systems. The 
comparisons of the implemented functions are done 
using OpenCV.  

TRABZ-10 image processing library functions 
are grouped in 6 major sections. These are Matrix 
operations, filtering, morphology, transformation, 
feature detection and conversion.  

4.1 Matrix Operations 

In matrix operations section there exist the basic 
matrix operations such as matrix addition, 
subtraction, multiplication, inversion, etc. All of the 
matrix operation functions take advantage of GPU, 
except a small set. Min, max functions are 
implemented on CPU side due to considerable 
amount of branching. These algorithms also 
implemented by reduction but the performance 
results showed no gain over OpenCV. 

4.2 Filtering Functions 

Filtering functions refer to a class of algorithms that 
are mostly about the convolution operations with 
different filters. In this group we have implemented 
11 functions including laplacian, sobel, scharr, 
median, bilateral, gaussian, box, normalized box and 
blur filters. These filters are the most frequently used 
filters in image processing.  

Image filtering is one of the most considerable 
fields for OpenCL because many of the image 
filtering algorithms is the perfect fit for parallel 
processing in memory access patterns and 
mathematical complexity. To utilize the benefits, 
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especially the massively parallel nature of OpenCL, 
best way is to divide image into blocks and assign 
these blocks to threads. Therefore, each thread is 
responsible for accessing global memory, copying 
pixel data to shared memory if it is needed and 
computing the wanted result for a single pixel. 

4.3 Morphological Operations 

Morphological operations are a subset of image 
filtering. The difference between regular filters and 
morphological operations is, filters multiply and add 
the values in the filter range and finds out the 
necessary pixel value, while morphological 
operations use widely known "fit", "hit" and "miss" 
functions over a structuring element. 

The main functions of morphology are erosion 
and dilation. Erosion is the intersection between 
image and structuring element and dilation is the 
union between them. These functions are more 
difficult to implement than filter functions due to the 
comparison and branching. Since morphological 
operations are applied on binary images, 
performance loss due to the branching can be 
compensated. 

4.4 Image Transformation 

In this section there exist four image transform 
functions which convert an image from one domain 
to another. One of these functions is DCT (discrete 
cosine transform) and one other function is DFT 
(discrete Fourier transform). The other two functions 
are inverse DCT and inverse DFT. 

Discrete cosine transform function calculates a 
matrix which is represented as a sum of sinusoids of 
varying magnitudes and frequencies from the given 
image with the shown in formula (1). 

 

(1) 

Discrete Fourier transform function calculates a 
matrix which is represented as a sum of complex 
exponentials of varying magnitudes, frequencies, 
and phases from the given image. Discrete Fourier 
transform is computed using the FFT (fast Fourier 
transform) algorithm which is a fast way to compute 
DFT. Mathematical representation of FFT is shown 
in formula (2). 

 (2) 

4.5 Geometric Transformations 

This section consists of nine geometrical 
transformation functions which perform a 
deformation operation on the pixel grid, and map the 
deformed grid to the destination image. This 
mapping is done from destination to source in order 
to avoid sampling artifacts. It means that instead of 
computing destination coordinates for each pixel in 
the source image, source coordinates are computed 
for each pixel in the destination image. In this way, 
every pixel in the destination image is covered and 
each of them is visited only once.  

4.6 Color Conversion 

This group of functions convert input image from 
one color space to another color space.  Color 
conversion kernels are low complexity kernels with 
no data dependency. Since different color spaces can 
be useful for different kind of image processing 
algorithms and video coding/decoding techniques, 
they need to be accelerated. They also could be 
ported to the GPU well, because these conversion 
functions exhibit significant amount of data 
parallelism. In TRABZ-10 we have implemented 
commonly used color conversion kernels such as 
YUV, HSV, LUV, XYZ to RGB and their reversed 
conversions. RGB to binary and RGB to grayscale 
functions are also implemented in this group of 
functions.  

4.7 Feature Detection 

In this group of functions we have implemented 6 
different algorithms. These algorithms give the 
features of images as a lines, corners or circles. We 
have implemented Canny and Hough (Line) 
transformation to detect edges, Harris, Eigen vector 
and Eigen value to detect corners and Circle Hough 
transformation to detect circles of the image.       

5 IMPLEMENTATION 
STRATEGIES 

In this section we will discuss about the general 
OpenCL coding strategies and optimizations. We 
first implemented the naïve kernels and then tried to 
vectorize the code. The use of local memory was 
very limited because Vivante GC2000 has as small 
as 1 KB of local on-chip memory for general 
purpose computation. After that point we passed 
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over algorithms to find algorithm dependent 
bottlenecks and exploit parallelism even further. We 
also tried connecting kernels to reduce CPU-GPU 
data transfers and fusing multiple kernels into one 
kernel.  

Increasing the memory bandwidth was the first 
thing to do to optimize the library. Coalescing 
memory accesses and avoiding bank conflicts while 
using shared memory was a high priority 
optimization strategy. 

Vector data types are supported for char, uchar, 
short, ushort, int, uint, float, long, and ulong in 
OpenCL. The contribution of using vector sizes to 
the performance is architecture dependent. Certain 
GPGPU architectures are more efficient in using 
vector data types in calculation of the operands and 
some are not. Since GC2000 has well-working 
vector units, exploiting this feature increases 
performance gain. 

Since the CPU and GPU are on the same chip in 
Freescale i.Mx6q processor, data copy between CPU 
and GPU is not necessary; they access the same off-
chip RAM. This strategy is also used in this library 
to avoid performance degradation caused by 
memory copy operation. 

The last strategy in our work was connecting 
different kernels. We developed a framework that 
connects different kernels and reduces the CPU-
GPU data transfers. Every kernel output is given to 
the input of another one, so data transfer and system 
call overhead can be discarded. As a future work, we 
will apply this framework for whole library. 

Kernel connection gives an average of 3x speed 
up over sequential kernel execution as can be seen in 
Figure 3. 

 

Figure 1: Simple and Medium Kernels. 

6 LIMITATIONS OF EMBEDDED 
PROFILE 

There are three major problems we encountered with 
embedded profile; small register size, small local 
memory and limited instruction memory. GC2000 
has 64 32-bit registers on each core, 1 KB of local 

memory and it has a limit of 512 instructions per 
kernel. Since it has these memory limitations, using 
registers and local memory is really challenging 
because of the register spill. When registers are not 
enough, each core holds the register data on global 
memory, which is off-chip and really slow, and this 
degrades performance. In GPGPU model model 
each core hosts a large number of thread groups and 
every thread group accesses memory. Between these 
accesses, thread groups wait for the completion of 
the previous memory access. Between these waits, 
scheduler switches to another active thread group. 
So this is why limited register size also limits the 
total active thread group count and this limits the 
scheduler’s efficiency of memory latencies. 

The other major problem was limited instruction 
memory. Since embedded GPUs have a limited 
instruction memory, larger kernels can exceed the 
instruction limit. GC2000 has an instruction limit of 
512 per kernel and this prevents implementing 
complex and large algorithms. In our library the 
most challenging algorithm is FFT and the limited 
instruction memory of GC2000 is one of the reasons 
behind this challenge.  

7 RESULTS 

This section covers the experimental results for 
transformation, filtering and matrix functions. Our 
test environment is an embedded platform which has 
a Quad Core ARM Cortex A9 CPU and Vivante 
GC2000 GPU. Specifications of the environment 
can be seen in Table 1. 

Table 1: Embedded Platform Specifications. 

Embedded Platform 

GPU 
Type 

GPU 
Clock 

GPU 
Cores 

CPU 
Type 

CPU 
Clock 

Memory 
Clock 

GC2000 
600 
Mhz  4 

Cortex 
A9 

1200 
Mhz  533 Mhz

All of the results that are shown on the figures are 
kernel execution times in seconds. OpenCV 
functions are executed on ARM Cortex A9 and 
TRABZ-10 results are from Vivante GC2000 
GPGPU. As it is seen from the figure, TRABZ-10 
has better results in all filtering functions with 
different image sizes than OpenCV. It can also be 
seen that speed up of functions increases with bigger 
image sizes.  

Filtering function results showed that TRABZ-10 
is up to 7X faster than OpenCV on our embedded 
platform. Figure 4 shows the achieved speedups 
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against OpenCV in filtering functions. 

 

Figure 2: Execution Times of Filtering Functions with 
Different Image Sizes on Embedded Platform. 

Transformation functions results showed that 
TRABZ-10 is up to 8x times faster than OpenCV on 
our embedded platform. Figure 5 shows the 
execution times on our embedded platform.  

 

Figure 3: Execution Times of Transformation Functions 
with Different Image Sizes on Embedded Platform. 

 

Figure 4: Execution Times of Matrix Operations on 
Embedded Platform. 

As the figure shows the most gained speed-up is 
over Warp Perspective and Warp Affine functions. 
On other functions execution times are relatively 
close to the OpenCV execution times.  

Figure 6 shows the execution times of another 
important set of operations, matrix operations, which 
is used widely on image processing.  From the figure, 
it can be seen that TRABZ-10 has a better 
performance on almost all of the functions. It also 

has a better average speed up than filtering and 
transformation function groups. Since some of the 
matrix functions are recursive by nature, these 
functions are implemented on CPU side.  

8 SAMPLE APPLICATION: FACE 
DETECTION 

To test our library, we implemented a naive face 
detection application. To be able to compare the 
results, we both implemented an OpenCV version 
and TRABZ-10 version with the same algorithm. 

The proposed method is based on color and 
feature-based face detection. The algorithm can 
detect human face under different lighting 
conditions with high speed and high detection ratio. 
The first step of the implementation consists of 
average luminance calculation in YCbCr color space 
to determine the compensated image. Chrominance 
(Cr) is used to detect pixels containing human skin 
color. To remove high frequency noise, a low pass 
filter is applied. Separate human-skin regions are 
labeled and corner points of each region is stored. 
Regions that do not pass the height to width ratio are 
eliminated. Then mouth detection is performed using 
vertical based histogram for matrix (M) given in 
formula (4). If mouth is not detected in region, it is 
eliminated. Similar operation is done for eye 
detection by determining vertical based histogram 
for pixels whose luminance is slightly darker than 
average skin-color. Regions that pass all these steps 
are marked as a human face. 

ߙ ൌ cosିଵ ൬
଴.ହሺଶோഢାீഢି஻ሻ

ඥሺோഢିீഢሻమାሺோഢି஻ሻሺீഢି஻ሻ
൰   	

௣௤ܯ																														 ൌ ቄ
0, ߙ ൏ 90
1,  (4)                   ݁ݏ݅ݓݎ݄݁ݐ݋

An example of detection results are presented in the 
Figure 7. Subjects considered in selected images 
belong to several groups and lighting conditions. A 
detected face is a correct detection with a small 
amount of about 5% tolerance. 

The detection ratio is computed by the ratio of 
the number of correct detections in a gallery to that 
of all the human faces in the gallery. The detection 
rate is around 95%, if the images considered have 
faces camouflaged with the background then the 
face detection efficiency comes down to around 90%. 
The reason for this decrease in the detection rate is 
due to the reason that the face is merged with that of 
the background. 
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Figure 7: Results of face detection with TRABZ-10. 

 

Figure 8: Performance results of face detection. 

On the performance side, TRABZ-10 has better 
performance for different image sizes. As it can be 
seen from the Figure 8, there are two different 
results for image size 512x512. The reason behind 
this difference is the number of features on these 
images. Number of features on the image is the main 
factor that affects the run time. 

9 CONCLUSIONS 

In this paper, we presented our open-source image 
processing library which is implemented using 
OpenCL. We developed base functionalities 
including filter functions, transformations, 
conversion and various matrix operations. Our 
results show that, TRABZ-10 has speedups for most 
of its functions compared to the embedded version 
of OpenCV. This library constitutes as a start point 
of image processing on embedded GPGPUs. It has 
basic functionality for now, but it is open for 
improvement. As a future work, we are planning to 
get power results and test our library on different 
embedded profiles that has OpenCL support and 
adding more functionality to the library.  
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