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In contemporary superscalar microprocessors, issue queue is a considerable energy dissipating

component due its complex scheduling logic. In addition to the energy dissipated for scheduling

activities, read and write lines of the issue queue entries are also high energy consuming pieces of

the issue queue. When these lines are used for reading and writing unnecessary information bits,
such as the immediate operand part of an instruction that does not use the immediate ¯eld or

the insigni¯cant higher order bits of an immediate operand that are in fact not needed, sig-

ni¯cant amount of energy is wasted. In this paper, we propose two techniques to reduce the

energy dissipation of the issue queue by exploiting the immediate operand ¯les of the stored
instructions: ¯rstly by storing immediate operands in separate immediate operand ¯les rather

than storing them inside the issue queue entries and secondly by issue queue partitioning based

on widths of immediate operands of instructions. We present our performance results and

energy savings using a cycle accurate simulator and testing the design with SPEC2K bench-
marks and 90 nm CMOS (UMC) technology.
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1. Introduction

Issue queue (or dispatch bu®er) of modern superscalar microprocessors is the indis-

pensable backbone of out of order execution, which is the method that exploits

instruction level parallelism. The purpose of contemporary microprocessors is to

achieve maximum execution parallelism of instructions in order to maximize the

performance. In superscalar microprocessors, multiple instructions are fetched from

the instruction cache and they are dispatched to the issue queue after decoding and

renaming stages in program execution order. Each instruction that is dispatched to

the issue queue is assigned to an entry that stores the immediate operand value and

other related information of an instruction such as the functional unit code and tags

for source and destination registers. Instructions wait inside the issue queue for being

issued to a functional unit until their source operands are available and an execution

unit becomes available for execution of the necessary function. This way, the issue

queue provides mechanisms for instructions to execute simultaneously which are not

dependent to any preceding instructions.

Issue queue is a component that allows out-of-order execution and improves the

performance of the processor. Some studies claim that the issue queue may consume

up to 25% of the total chip power.8 Issue queue contains a wake up logic to identify

ready operands of waiting instructions and selection logic to choose an appropriate

instruction to be issued to a functional unit.4 In addition to these main energy

consumption factors of issue queue, writing the decoded information of each

instruction into the ¯elds of the issue queue entries in dispatch stage and reading the

contents of these entries when instructions are issued to functional units are other

sources of dynamic energy dissipation. It is not a surprising inference that, an

increase in the number of issue queue entries results in an increase in the energy

consumption of issue queue. Likewise, as the number of bits in an issue queue entry

increases, energy dissipation originating from the activities of read and write lines

and leakage energy dissipation for each bit increases accordingly.

Many techniques exist in the literature, which try to minimize energy consump-

tion and power dissipation of issue queue logic.1�4 However, exploiting the di®erent

characteristics of the immediate operands of the instructions stored inside the issue

queue has not been considered yet to reduce the energy dissipation. Immediate

operands occupy a large fraction of the bits inside the issue queue entries. These bits

are accessed at each cycle either for writing the information for an incoming

instruction at the dispatch stage or reading the contents at the issue stage which

result in signi¯cant energy dissipation. On the other hand, many instructions do not

possess immediate operands and even if the instructions use the immediate ¯eld only

a small fraction of the bits contain necessary information. These values, that contain

a large number of consecutive zeros and ones, are called narrow values as also de¯ned

in Ref. 13. Although the immediate operands that come together with the instruc-

tions are generally narrow, their upper order bits are written to, stored in and read
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from the issue queue entries unnecessarily and existence of these unnecessary bits

contribute to static and dynamic energy ine±ciency. The importance of CMOS static

energy dissipation according to the gate scaling trends brie°y explained in Ref. 19.

In this paper, we propose two new techniques to reduce the energy dissipation of

the immediate value holding part of the issue queue. The ¯rst technique is based on

splitting the immediate operand ¯les from issue queue entries into an immediate

operand ¯le that is pointed by issue queue entries, in case of an immediate operand

need. We aim to lower both static and dynamic energy dissipation of the issue queue,

by using smaller number of entries in the separate immediate operand ¯le than the

number of entries in the original issue queue and taking the narrow widths of

the immediate operands into account. The second technique is based on modifying

the issue queue by making use of instructions which do not use their immediate

operand ¯les and instructions with narrow immediate operands. The technique of

partitioning the issue queue based on existence of immediate operands and widths of

immediate operands, where unnecessary bit writes, storage of bits and bit reads are

omitted, leads to an energy-e±cient issue queue design. The rest of the paper is

organized as follows: In Sec. 2, we summarize the background about code com-

pression techniques and their usage in microprocessors. Section 3 describes the mo-

tivation for modifying the issue queue according to immediate operands. Section 4

presents the separate immediate operand ¯le technique followed by the explanation

of the issue queue partitioning technique in Sec. 5. The simulation methodology is

explained in Sec. 6, performance and energy dissipation results are stated in Sec. 7.

Finally, we o®er our concluding remarks in Sec. 8.

2. Background

A large number of instruction and operand compression techniques are proposed in

order to save area and power in instruction storage devices. In Ref. 5, Lin and Chung

introduced a technique called operand ¯les remapping in which frequently used

operand codes and operands are stored in a dictionary matched with code words and

their occurrences in a program are replaced with smaller size code words to reduce

the instruction bu®er area. Okuma et al. proposed several techniques for encoding

immediate ¯elds of instruction to reduce the size of instruction memory in embedded

systems in Ref. 6, observing that the immediate ¯eld is the longest ¯eld of instruc-

tions in many processors. This approach considers the area consumption of large

immediate values but prefers a challenging way of compression which includes time

and energy consuming encoding and decoding processes.

A less challenging way of compression is using signi¯cance of operand values.

Narrowness or zero bytes of values are exploited to reduce the power consumption

when the values are transferred, written, read, stored and executed. Villa et al.

proposed to compress all zero bytes in the data cache into a single bit by adding some

additional hardware into RAM to detect and compress zero bytes in memory in
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Ref. 7. In Ref. 8 Ponomarev et al. considered the narrowness of operands during

dispatch, issuing and forwarding phases of issue queue and proposed adding extra

zero byte indicator bit for each byte and avoid transferring and manipulating zero

bytes of operands.

Benini et al. have proposed using code compression to reduce power consumption

and storage area requirements with three new schemes based on static and dynamic

compression in embedded microprocessors.29 In Ref. 9 Canal et al. introduces pipe-

lining techniques taking the advantage of signi¯cance compression for every phase of

a pipeline and reducing the power consumption with a little CPI (cycle per

instruction) increase. Canal et al. developed a new compiler based technique in

Ref. 21, by modifying the instruction set architecture, to take the advantage of

narrow values. Another compiler based technique is proposed in Ref. 23, where the

actual bit widths of variables, independent from the data types of variables de¯ned

by the programmer in source code, are determined at compile time. Cao et al. de¯ned

a new approach to minimize power consumption by exploiting redundant bits, by

lowering datapath width of the system.22 Likewise, it is proposed to place narrow

execution units (register ¯les, functional units, caches) for all narrow operands

in Ref. 27.

In Ref. 10 Brooks and Martonosi propose two techniques to take the advantage of

narrowness of operands in execution units by disabling unnecessary bits of a func-

tional unit those correspond to insigni¯cant bits of an operand and packing multiple

narrow signi¯cant parts of operands in a single functional unit. In Ref. 20, it is

proposed to place new ports to the register ¯le that only reads narrow values to save

from dynamic energy consumption. Multiple narrow register values are packed in one

register in Ref. 24 and in Refs. 25 and 26 multiple copies of a narrow register value are

stored in one register for error detection and correction. Likewise, multiple narrow

operands can be executed in one functional unit which results in higher performance

speed.28 Wang et al. proposed a banked register ¯le design where upper order bits of

the registers are removed in some of register banks to achieve energy e±ciency in

Ref. 16. Although the same design can be applied to the issue queue, there is a

performance penalty due to result value mispredictions. Osmanlioglu et al. o®ers a

technique for data holding components of the microprocessor which includes parti-

tioning the issue queue in Ref. 18.

A large number of techniques are proposed in order to reduce the power con-

sumption of the issue queue logic. Some techniques focus on source operands of issue

queue entries and their comparisons. In Ref. 1, Ernst and Austin proposed to reduce

the number of tag comparators assuming that most of the instructions are dispatched

to the issue queue with at least one already available operand. Similarly, in Ref. 2

Kim and Lipasti proposed the techniques of sequential wake up and sequential

register ¯le access for instructions with two source operands stating that a high

proportion of entries in issue queue do not possess two source operands, thus they

need only one wake up logic bus and one register ¯le access port. Folegnani and
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Gonzalez, introduced the technique of disabling wake up logic of some partitions of

issue queue according to the need for the wakeup logic to reduce power consumption

in Ref. 3, observing that empty entries and ready operands of entries in issue queue

do not need wake up logic. This technique is an example of portioning the issue

queue. Another technique to partition the issue queue is proposed by Palacharla

et al. in Ref. 4. They simplify the issue queue logic by grouping the dependent

instructions into separate in-order execution FIFOs where instructions are issued to

execution units parallel from di®erent queues implementing the wake up and selec-

tion logic only for the head entries of FIFOs.

Although all of these techniques consider the narrowness of instructions, operands

and operation codes in order to reduce the power consumption of a processor in

di®erent components of a processor, they pay little or no attention to the storage of

large width immediate values in issue queue and their static and dynamic power

consumptions when they are being transferred and executed.

3. Motivation

3.1. Distribution of instructions based on the existence

of the immediate operand

In modern superscalar microprocessors, a large number of instruction formats exist

that di®ers from each other mainly by their lengths, occurrence of pre¯xes, lengths of

operation codes, number of source and destination registers and especially by the

existence of immediate operand values and their lengths. For instance, in Intel 64

instruction set architecture, an immediate operand is optional depending on the

operation of the instruction.11 Figure 1 shows the distribution of instructions in

Fig. 1. Distribution of instructions based on their structure.
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SPEC CPU2K benchmarks, which are dispatched to issue queue entries, based on

their possession of immediate operand values. On the average, across all SPEC

CPU2K benchmarks, 40% of the instructions do not possess an immediate operand

value. Furthermore, among the instructions that possess immediate operands, width

of an immediate operand may vary between 1 and 4 bytes. This means that, an

immediate operand can be represented with less the 4 bytes in a 64 bit processor.

Bit width distribution of immediate operands stored in issue queue entries is

shown in Fig. 2 and explained in Sec. 3.2. In 64 bit processors, immediate operand

values are ¯rstly sign extended to 32 bits before being dispatched to an issue queue

entry, if they have a smaller width. Immediate operands occupy a storage space of 32

bits in their issue queue entries. These immediate operands are sign extended to 64

bits prior to their usage,11 during the issue phase.

Most of the dispatched instructions do not contain immediate operand values or

contain immediate operands possessing narrow signi¯cant bit widths. When these

instructions are written to their reserved issue queue entries at dispatch phase and

read at issue phase, the whole area reserved for these immediate operands is pro-

cessed and also the corresponding bitcells cause static energy dissipation, even if they

do not contain any valid data or if they contain insigni¯cant bits only because of

their physical existence in issue queue entries. Each of these operations results in

energy dissipation. As observed in Ref. 8, in a dispatch bound issue queue where

the contents of source registers are stored in issue queue entries, 65% of energy

dissipation of issue queue is caused by the operations at dispatch and issuing phases.

Immediate operand values contribute to an important proportion of energy

dissipation in issue queue, because of their large bit widths: 32 bits in a 64 bit

microprocessor.

Fig. 2. Bit width distribution of immediate operands stored in issue queue entries.
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3.2. Exploration of narrow immediate operands

Narrow values are values that contain many unnecessary bits used for sign exten-

sion. In 64 bit microprocessors, operands are sign extended to 32 bits to be stored in

issue queue entries. The real bit width of a value is its signi¯cant part's bit width.

Figure 2 shows the real bit width distribution of immediate operands in SPEC

CPU2K benchmarks and the cumulative sum of each real bit width. For example,

8.1% of the immediate operands can be expressed with only 4 signi¯cant bits and

14.6% of the immediate operands can be expressed with 4 or less bits. As shown in

Fig. 2, a high proportion of immediate operands can be expressed with less than 32

bits. When these narrow immediate values are stored in the issue queue entries, the

bits occupying the immediate area, other than the signi¯cant part of the value, are

insigni¯cant sign extension bits. For instance, the number 5, which is equal to 0101

in two's complement notation, can be represented with only 4 bits, a sign bit and

data bits, instead of 32 bits. It is unnecessary to write and read the other 28 bits of

an immediate operand area which represent the extension of the sign of the value. In

order to avoid power dissipation caused by write and read operations of unnecessary

sign extension bits of immediate operands and static energy dissipation of these

bitcells, their existence and thus unnecessary operations on these values may be

omitted.

4. Separate Immediate Operand Files

In this section, we propose a technique in which, immediate operand ¯les of issue

queue entries are removed throughout the issue queue and immediate operands of

instructions are stored in separate immediate operand ¯les called narrow and wide

immediate operand ¯les. For this purpose, the 32 bits of immediate operand areas of

issue queue entries are replaced with pointer bits as shown in Fig. 3. The number of

pointer bits can change according to the number of entries in the immediate operand

¯le. For example, if there are 16 immediate operand entries in the immediate operand

¯le, each issue queue entry can point to one of these entries with 4 bits, if one needs

an immediate operand storage area. For instructions with no immediate operands,

the contents of these pointer bits are not important as the processor will not seek an

immediate value at the issue stage. The immediate operand ¯le has two partitions.

The ¯rst partition, narrow immediate operand ¯le, is for narrow immediate

operands, while the second partition, wide immediate operand ¯le, is for wide

immediate operands. Narrow and wide immediate operands are identi¯ed according

to the narrowness factor. If an immediate operands' real bit width is less than or

equal to the narrowness factor, it is identi¯ed as a narrow operand and it is placed to

an immediate operand storage area in a narrow immediate operand ¯le. Otherwise it

is called a wide immediate operand and it is placed in a wide immediate operand ¯le

entry. The sizes of immediate operand ¯les and the narrowness factor are set based
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on Figs. 1 and 2, according to the ratio of instructions with immediate operands and

the real bit width distribution respectively.

In this new con¯guration of a microprocessor, the architectural layout must be

modi¯ed in order to determine the narrowness of the immediate operand of an

instruction (whether it is narrower than the narrowness factor or not) by a special

hardware component, narrow value identi¯er, parallel to one of the pipeline stages in

order not to lengthen the critical path of the processor. The most suitable archi-

tectural phase, for the narrowness identi¯er of immediate operands, is the renaming

phase which is considerably a time consuming complex operation. The narrowness

identi¯er logic will operate on immediate operands of instructions while their regis-

ters are renamed as seen in Fig. 3.

Figure 4 shows a 24 bit wide two stage zero detector, constructed with 3 of

consecutive zero detectors which are 8 bits wide. Consecutive zero detectors simply

operate as OR function.17,30 Outputs of detectors are inverted and input to the

second stage of the detector which is 3 bits wide consecutive zero detector. For

example, if the value is 8 bit narrow, most signi¯cant 24 bits of the 32 bit value are

input to the narrow value identi¯er circuit in order to show that the 32 bit value can

be represented with only 8 bits. If the value is narrow, precharged output remains at

HIGH otherwise discharges and signals LOW. As expected, by implementing small

sized inverters and accommodate small number of the transistors at the second stage,

3 nmos transistors in this example, TPHL and precharge delays are very low
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compared to the one period of the clock cycle. To detect a narrow value which

consists of only ones, the values are ¯rst inverted then input to the zero detector

circuit. Results of the zero detector and one detector are ORed to form a narrow

value identi¯er circuit.

Whenever an instruction does not possess an immediate operand, it will continue

in the pipeline as in the normal case without needing an immediate operand entry

from the immediate operand ¯les and also, no bitcell will be written and read for

immediate operands of this kind of instructions. If an instruction has an immediate

operand with a real bit width larger than the narrowness factor it will be assigned to

an issue queue entry and also an immediate operand entry from the wide immediate

operand ¯le. Whenever an instruction with a narrow immediate operand is dis-

patched, an issue queue entry and an entry from the narrow immediate operand ¯le

must be assigned to this instruction. When an available entry from the narrow

immediate operand ¯le does not exist, an entry from the wide immediate operand ¯le

can be assigned to this instruction. Unless one of the required conditions are met, the
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Fig. 4. 24 bit wide 2 stage consecutive zero detector.
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instruction will stall at dispatch stage, until the necessary entries become available

which may result in a small performance loss that will be discussed in Sec. 7.

In issue bound processors, instructions read their operand values from the register

¯le during the issue phase. Contemporary microprocessors, such as the Intel's

Pentium 4, follow this scheme and use an adjusted pipeline to achieve back to back

execution.14 Reading of the immediate value from the immediate ¯le can be over-

lapped with the register read stage as the processor already spends the time to fetch

the operands from the register ¯le. Therefore adding a new index to the issue queue

and accessing the immediate ¯le at the issue stage relatively neither a®ects the cycle

time of the processor or the issue process nor adds an additional cycle to the issue

stage.

5. Issue Queue Partitioning

The main idea of the issue queue partitioning technique is to reduce the energy

dissipation of issue queue by not writing the unnecessary sign extension bits in issue

queue entries and not reading them to functional units. For this purpose, all or some

of the bit cell area reserved for immediate operand bits will be removed from some

parts of issue queue. Consequently, the storage area and leakage energy dissipation of

the immediate operand bits will also be reduced. Energy savings are achieved by not

driving insigni¯cant sign bits during a write operation and removing the sense

ampli¯ers and prechargers on a read port of issue queue immediate operand bit cells.

In order to reduce the energy consumption, the issue queue is partitioned into

three components. The ¯rst component is dedicated to instructions without any

immediate operand and is called the no-immediate partition, the second component

is for instructions with narrow immediate operands (called the narrow partition) and

the third component is reserved for instructions with wide immediate operands

(in our case 32 bits), called the wide partition, as shown in Fig. 5. For the ¯rst issue

queue partition, bitcells, read and write logic for immediate operand bits are elimi-

nated as entries from this partition are reserved for instructions which do not possess

immediate operands. For the narrow partition only signi¯cant bits of immediate

operands are driven and the repeating sign bits are omitted. The wide partition

allows the storage of full-width immediate operands.

The narrowness factor (which is de¯ned as the number of bits provided for the

narrow immediate of operands) of the narrow partition is determined based on the

bit width distribution of immediate operands shown in Fig. 2 and the number of

entries for each issue queue partition are determined by the ratio of instructions that

do not possess any immediate operands as shown in Fig. 1. The designer should use

the information depicted in Figs. 1 and 2 to determine the sizes of the issue queue

partitions and the value-width of the narrow immediate operand partition.

Before the dispatch of an instruction, it must be detected whether the immediate

operand of the instruction is narrow or wide. For detection of narrowness, a special
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hardware component detecting the insigni¯cant 0 and 1 bits must be located before

the issue queue as seen in Fig. 4. This operation does not necessarily occur at dispatch

stage in order not to lengthen the critical path of an instruction in the pipeline. The

narrowness of an immediate operand can be detected at any of frontend stages,

possibly in parallel with other operations such as the register renaming as shown in

Fig. 5. Although fast leading zero/one detectors can be designed using the dynamic

logic,13 they still have a circuit delay and should be placed in a pipeline stage that

tolerates the extra latency. This way, a decrease in processor frequency can be

avoided. On the other hand, it is better to detect the narrowness of an immediate

operand as close to the dispatch stage as possible, in order to minimize the extra

energy dissipation for transferring required control signals between the pipeline

stages.

After detecting whether the immediate operand of an instruction is narrow, it will

be placed in one of the three issue queue partitions: no-immediate, narrow or wide

partition. Whenever an instruction does not possess an immediate operand, an entry

from the no-immediate partition of issue queue is allocated for that instruction.

Instructions with no immediate operand are not allowed to be stored in other two

partitions, because necessary number of issue queue entries is reserved for them in

their partition. Allowing them to be stored in other partitions will lead to the stall of

instructions with an immediate operand at dispatch stage. If the instruction includes
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an immediate operand, it will be placed in one of the other two partitions according to

the real bit width of its immediate operand. If an instruction with an immediate

operand width smaller or equal to the narrowness factor, it is said to be a narrow

instruction and an issue queue entry is allocated to this narrow instruction from the

narrow (second) partition.When an instruction is narrow, if there are no free entries in

the narrow partition, an entry from the wide (third) partition is allocated for this

instruction. If an instruction's immediate operand width is larger than the narrowness

factor, the instruction will be placed in the third partition. For example, when an

immediate operand is determined to be narrow, but the narrow issue queue partition

does not have an available entry, the incoming instruction can be sent to the wide issue

queue partition. Unless these conditions are satis¯ed, the instruction will stall at

dispatch stage until an appropriate issue queue entry for this instruction is available.

When this happens, some energy e±ciency is sacri¯ced for reducing the performance

impact of not ¯nding an available entry and stalling the pipeline. In order to guarantee

forward operation, at least one entry should be present with a full width immediate

¯eld. Otherwise the pipeline may get stuck as there would not be any available issue

queue entry when an instruction with a wide immediate operand arrives.

After instructions wait in the issue queue for their execution conditions to be met,

they are issued to functional units. In issue stage the immediate operands of

instructions, which are placed in narrow partition, must be sign extended before they

are executed in order to meet the input width of the functional units.

A 32 row 32 column baseline immediate operand partition of issue queue layout is

shown in Fig. 6. Partitioning the issue queue into three pieces according to the

immediate operand ¯les of the instructions reduces both the dynamic and static

Fig. 6. Layout of the baseline immediate operand area of issue queue.
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energy dissipation of the issue queue. Dynamic energy dissipation is reduced because

of the bit lines that are not driven for the upper order bits of the narrow immediate

values. Word select driver lines are also shorter for narrow storage components and

require less energy to be activated. Since the number of entries for the storage that

holds the immediate values is reduced, the capacitance on the bit lines is also reduced

which results in a reduction in the energy dissipation of the write drivers and pre-

chargers. If a partition holds only a few entries, the sense ampli¯ers, which are

connected to the bit lines for faster read operation, can also be removed for further

energy e±ciency.

Static energy dissipation due to the leakage current is also reduced through the

proposed technique. Since the unused bitcells are removed from the processor instead

of not driving the bit lines and word lines for unused immediate operands, the

number of paths between the voltage source and the ground is decreased. Conse-

quently, the static energy dissipation of the immediate ¯eld of the issue queue

decreases proportionally with the percentage of bits removed from the storage space.

In the baseline, with a uni¯ed issue queue, the processor stalls at the dispatch

stage when there are no available entries inside the issue queue. In the proposed

technique this constraint is a little tighter as the possibility of a stall is increased due

to the reduced number of entries for each instruction type. Especially for the

instructions with full-width immediate values, the number of entries that the

instruction can be placed is limited to the capacity of the third partition. Therefore

the proposed scheme may result in performance degradation if the sizes of the

partitions are not determined appropriately.

6. Evaluation Methodology

The cycle accurate out-of-order x86 microprocessor simulator PTLsim12 is used to

observe the real bit width distributions of immediate operands in the issue queue. To

test our methodology, we modi¯ed the simulator's issue queue structure, rename and

dispatch phases. The baseline processor performance is determined with one 32-entry

issue queue in one cluster. The signi¯cant bit widths of immediate operands of

instructions are determined at the rename stage, the instructions are dispatched to

issue queue according to their real bit widths and the number of writes and reads are

determined at dispatch and issue stages of instructions. The other con¯guration

components of the simulator are listed in Table 1.

Spec CPU2K benchmarks are run on various simulator con¯gurations to observe

the performance variation and to observe the distribution of all instructions to issue

queue partitions and immediate operand ¯les to calculate the power and energy

consumptions of di®erent con¯gurations. 1.5 billions of instructions are committed

for each benchmark. In PTLsim, there is no need to warm up the simulator, because

PTLsim directly executes the programs on the host CPU until it switches to cycle

accurate simulation mode, so there is no way to count instructions in this manner.12
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For estimating energy dissipations at dispatch and issue phases, event counts

from the simulator were combined with the energy dissipations measured from actual

full custom CMOS layouts of the processor components as proposed in Ref. 15.

A 90 nm CMOS (UMC) technology with a Vdd of 1 Volt was used in order to measure

the energy dissipation.

7. Results and Discussions

Creating a separate immediate ¯le and decoupling the immediate values from the

issue queue o®ers an opportunity to reduce energy dissipation of the issue queue as

described in Sec. 4. In this proposed technique, the instructions with no immediate

operands can get any entry inside the issue queue just as it is in the baseline. The

instructions that use the immediate operand are dispatched to the issue queue only if

there is an available entry in the suitable immediate ¯le partition. Di®erent from the

issue queue partitioning scheme, in our implementation of the immediate ¯le scheme

it is possible for an instruction without an immediate operand to proceed to the issue

queue if there is an available entry. For the issue queue partitioning scheme we did

not allow no-immediate instructions to occupy the entries reserved for instructions

with narrow or wide immediate values.

Figure 7 shows the con¯gurations for the proposed technique and energy and area

reduction results for the varying immediate ¯le con¯gurations. In this proposed

technique, there is an immediate operand ¯le to store immediate operands of

instructions in issue queue. The immediate ¯le is divided into a narrow and a wide

partition. Every immediate operand entry in the narrow partition has a number of

bit cells equal to the narrowness factor. Immediate operand entries in wide partition

have 32 bitcells. \File size" in Fig. 7 represents the number of immediate operand

entries in each partition. Total ¯le size can be de¯ned as the sum of narrow ¯le size

and wide ¯le size. As seen in Fig. 7, total ¯le size is set to 16 (narrow ¯le sizeþ wide

¯le size) in the ¯rst four con¯gurations. To point to all of the immediate operand ¯le

entries from issue queue entries when they are needed by the instruction, every issue

queue entry has an additional 4 pointer bits which will also cause some energy

dissipation additionally. However, the 16 immediate operand entries are de¯cient

when the results of Fig. 1 are considered. It is observed in Fig. 1 that 60% of the

Table 1. Con¯guration of the simulated processor.

Parameter Con¯guration

Machine width 4-wide fetch, 4-wide issue, 4-wide commit

Window size 80 entry load/store queue, 128-entry ROB

Number of clusters 1 cluster

Function units 2 Arithmetic Logic, 2 Floating Point, 2 Load, 2 Store
L1 I-cache 32 KB, 4-way set-associative, 64 byte line, 1 cycles hit time

L1 D-cache 32 KB, 4-way set-associative, 64 byte line, 2 cycles hit time

L2 Cache uni¯ed 256 KB, 16-way set-associative, 64 byte line, 6 cycles hit time
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instructions possess an immediate operand. It means that, on the average, 60% (19/

32) of the issue queue entries needs an immediate operand entry from the immediate

operand ¯le, but in this case 5 pointer bits for each issue queue entry is needed. This

con¯guration is also experimented in the ¯fth con¯guration (17-2/16) in Fig. 7.

Four con¯gurations with an immediate operand ¯le size 16 and a con¯guration

with immediate operand ¯le size 19 is tried out. You can see the results of these

con¯gurations in Fig. 7. The narrowness factors of the con¯gurations are determined

according to the breaking points in Fig. 2. The immediate operand ¯le partition sizes

are also determined based on the narrowness factors' cumulative sum in Fig. 2. For

the ¯rst four con¯gurations, narrowness factor and proportionally, immediate

operand ¯le partition sizes are modi¯ed.

The energy and area reduction and performance changes are determined by

comparing the energy dissipation and area of the proposed separate immediate ¯le

technique with an issue queue in a normal microprocessor which has 32 entries and

each entry has 32 bitcells for immediate operands. This means that, the energy and

area reductions listed in Fig. 7 are for only the operations on immediate operands in

issue queue. All con¯gurations consist of three energy components. First, if the

operation is write, narrow value identi¯cation energy which was subjected in Sec. 4

should be considered. Second, read or write energy including of all the issue queue

components used during the operation is calculated. Last, if the value to be read is

narrow, extension operation energy which is implemented by transmission gate

multiplexor is calculated.

In ¯rst four con¯gurations, a small amount of performance loss is observed due to

the small number of total immediate ¯le sizes than in the base con¯guration.

Although 60% of the instructions possess an immediate operand, only half of the

issue queue is reserved for these instructions which resulted with approximately

0.25% performance degradation.

Fig. 7. Results of separate ¯le for di®erent con¯gurations.
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It is observed that, the smaller the narrowness factor, the higher the energy and

area reduction. Performance (IPC-instruction per cycle) did not change noticeably,

because the sizes of the immediate operand ¯les are determined based proportional to

the distribution of narrowness of immediate operands.

Power consumption distribution of immediate operand ¯les is shown in Fig. 8.

The aim is to minimize the usage of wide immediate ¯le but its usage is compulsory

for instructions with wide immediate operands, also to avoid stalls of instructions

with narrow immediate operands. As observed in Fig. 8, energy dissipation pro-

portion of wide immediate operand ¯le partition becomes smaller as its size decreased

and the narrowness factor increased, as expected. As the narrowness factor increases,

much more number of the immediate operands are placed in narrow partition which

results in energy saving.

As the results reveal, using a separate immediate ¯le reduces the area and the

energy dissipation of the immediate part of the issue queue. However this decrease is

smaller than the bene¯ts of issue queue partitioning scheme as the additional

indexing bits are occupying area and dissipating additional energy.

For the technique described in Sec. 5, the original issue queue is partitioned into

three components: For instructions without an immediate operand (IQ1), for

instructions with a narrow immediate operand (IQ2) and for instructions with a wide

immediate operand (IQ3). Our purpose is to have minimum power dissipation and

area without losing performance by mostly using the no-immediate and narrow

partitions, as the number of bits inside the immediate operands that are driven to

read and write drivers are either zero or a smaller number than the datapath width.

On the other hand, it is desirable to avoid performance degradation caused by the

stalled instructions during the allocation of an available issue queue entry. Instruc-

tions can stop at the dispatch stage and cause performance degradation if an entry

Fig. 8. Power consumption distribution of immediate ¯les at Fig. 7.
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from the required partition is not available. In order to decrease the number of stalls

caused by waiting instructions at the dispatch phase, the entries of the issue queue

must be distributed to partitions with a fair heuristic, mostly proportional to

characteristics of the dispatched instructions shown in Figs. 1 and 2. It is observed

that 40% of the instructions do not possess an immediate operand, so that 40% of the

issue queue entries, 13 entries, are reserved for instructions without immediate

operands. The rest of the issue queue entries, 19 entries, are shared between

instructions with a narrow immediate operand and instructions with a wide im-

mediate operand. Narrow immediate ¯le size is determined based on the narrowness

factor and narrowness factor is determined from the critical breaking points in Fig. 2

for the ¯rst seven con¯gurations. Narrow immediate ¯le size is set to the narrowness

factor's cumulative sum percentage determined in Fig. 2 times 19, as there are

19 entries left for instructions with an immediate operand. For the eighth con-

¯guration, the number of entries for each issue queue partition is distributed equally.

Di®erent con¯gurations based on di®erent narrowness factors are ¯gured out in

Fig. 9 with their energy and area change results. Seven con¯gurations of the simu-

lated processor with di®erent number of entries in the issue queue components and

narrowness factor for each partition of issue queue are experimented. The parameters

of di®erent issue queue con¯gurations used in our experiments are indicated in Fig. 9.

For each con¯guration we chose to have a total of 32 entries inside the issue queue in

order to avoid a large performance drop and to have a fair comparison with our

baseline that has a single 32-entry issue queue.

The energy and areas comparisons are done with a 32-entry issue queue where

each entry has a 32-bit immediate operand area. The energy and area reduction

results depicted in Fig. 9 are for only read and write operations on immediate

Fig. 9. Results of issue queue partitioning for di®erent con¯gurations.
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operands in the issue queue. The energy dissipation to identify narrow value, read,

write and extend the immediate operands in issue queue in the proposed technique is

compared to the energy dissipation that is caused by reading and writing immediate

operands in a normal issue queue. The results show that, removing some part or the

entire immediate ¯eld from some entries of the issue queue signi¯cantly reduces the

energy dissipation on the immediate part of the issue queue. The smaller the nar-

rowness factor, the higher the energy and area reduction, as observed in ¯rst six

con¯gurations. As the narrowness factor gets smaller, the number of bitcells

decreased and the energy to process these bitcells also decreases. The area of the

immediate part of the issue queue is also drastically reduced as the narrowness factor

is reduced. Area reduction can be observed by comparing the issue queue layout

pictures depicted in Figs. 6 and 10.

No performance loss is observed in ¯rst six con¯gurations, because issue queue

partition sizes are determined based on the distribution of instruction types. In the

seventh con¯guration, 2.86% performance loss is due to the unnecessary high number

issue queue entries that are reserved for instructions with wide immediate operands.

The results in Fig. 9 show that 32-bit wide immediate operands are rarely used and

create energy ine±ciency in the issue queue. As these values are usually not used,

when the space reserved for the wide operands are removed, the performance of the

processor is not a®ected. Increasing the number of entries for the wide immediate

operands, results in the most performance degradation as the instructions without an

immediate operand or with narrow immediate operand fail to ¯nd an available entry

at dispatch time.

Although there are cases in Figs. 7 and 9 that o®er more energy reduction at the

expense of some performance degradation, our simulation results should be taken as

the proof of concept rather than exact ¯gures. A processor designer should analyze

the workloads that will be run on the processor and has to decide on the power/

performance tradeo®s according to the design budget.

Figure 11 shows the power consumption distribution for the issue queue partitions

of con¯gurations in Fig. 9. Since there are no bitcells reserved for the immediate

Fig. 10. Layout of the immediate operand area of partitioned issue queue for Conf. 1(13-16-3/11) in
Fig. 9.
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values in the no-immediate partition, dynamic and static energy consumptions for

immediate operands do not exist in this partition. Only decoder energy is calculated

in order to make a realistic comparison to the baseline issue queue consumption.

Because a big proportion of the instructions are stored in narrow partition, it is the

most energy consuming partition. Although the purpose is to minimize the usage of

wide partition, it is used for instructions with wide immediate operands and also to

avoid stalls of instructions with narrow immediate operands. Most of the energy is

consumed by the narrow partition and power consumptions of no-immediate and

wide partitions are minimized.

8. Concluding Remarks

Many instructions do not use the immediate values in contemporary micro-

processors. However all of the entries of the issue queue structure, which hold the

instructions before they proceed to the execution stage, are designed to hold im-

mediate values for each instruction as all instructions can be placed in any entry. The

storage space allocated for the immediate operands are written to and read from

unnecessarily when an instruction without an immediate operand enters the issue

queue. Moreover, many of the immediate values that are actually used by the

instructions do not need the full bit width of the storage space and can be expressed

with less number of bits.

In this paper we proposed a scheme to design an issue queue that can exploit the

immediate value characteristics of the incoming instructions for energy e±ciency.

The ¯rst proposed technique is to create an immediate ¯le separate from the issue

queue, that stores immediate operands of issue queue entries if they exist. In the

second proposed technique, we show that signi¯cant energy savings are achieved

by partitioning the issue queue into three parts, where there is a part for instructions

without any immediate operands, narrow immediate operands and regular immediate

Fig. 11. Distribution of power consumption of issue partitions at Fig. 9.
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operands. Our simulation results show that on the average across all Spec CPU2K

benchmarks, it is possible to achieve up to nearly 61% power and 30% area reduction

for the immediate operand ¯elds of the issue queue with a very small amount of

performance degradation with the separate immediate ¯le technique. With the issue

queue partitioning technique, 74% power reduction and 45% area reduction is

achieved, for immediate operands stored in issue queue, with no performance loss.
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